尊龙ag旗舰厅下载

自二十世纪八十年代提出林纸结合以来,发展林业造纸,走林纸一体化道路己成为林业和纸业界的共识。

  • 博客访问: 573388
  • 博文数量: 222
  • 用 户 组: 普通用户
  • 注册时间:2019-06-19 23:00:28
  • 认证徽章:
个人简介

主要的突出问题是人口增长过快或过慢的问题、人口老龄化问题。

文章分类

全部博文(309)

文章存档

2015年(546)

2014年(589)

2013年(316)

2012年(537)

订阅

分类: IT168

尊龙ag旗舰厅下载,四、关于50D过胶风衣布产生化学作用沾色的问题2018年6月,我们司接到一单外资司的定单50D过胶风衣。为什么木条、硫分别在空气里和氧气里燃烧的现象不同它说明了什么——氧气的含量越高,燃烧越剧烈。利来国际三、女装棉衣帽边毛料技术改良2018年5月,司接到了一张出口女装棉衣订单,数量x,由于单价问题同客人无法将合同签定下,最大原因是帽边用的是真毛,一条真毛成本价已经是x元/70Cm,为了减低成本,我们建议客人将帽边真毛由原的帽边至帽边,更改为在帽脚位前中加搭位,这样原真毛用量减短了,成本也可以降下,对整体外观影响也不大,而且又加强了保暖功能,真毛成本降低了x%,经过客人同意,合同签定下,司在原利润上还赚多了x多万。 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂

 微积分基本定理学习目标重点难点1.会用定积分求曲边梯形的面积.2.直观了解微积分基本定理的含义.重点:微积分基本定理及利用定理求定积分.难点:利用定积分求较复杂的图形的面积.微积分基本定理对于被积函数f(x),如果F′(x)=f(x),则eq\i\in(a,b,)f(x)dx=__________,亦即____________=F(b)-F(a).预习交流1做一做:eq\i\in(0,1,)x2dx=________.预习交流2做一做:eq\i\in(0,π,)(cosx+1)dx=________.预习交流3议一议:结合下列各图形,判断相应定积分的值的符号:(1)eq\i\in(a,b,)f(x)dx____0(2)eq\i\in(a,b,)g(x)dx____0(3)eq\i\in(a,b,)h(x)dx____0在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引F(b)-F(a) eq\i\in(a,b,)F′(x)dx预习交流1:提示:eq\f(1,3)预习交流2:提示:∵(sinx+x)′=cosx+1,∴eq\i\in(0,π,)(cosx+1)dx=eq\i\in(0,π,)(sinx+x)′dx=sinπ+π-(sin0+0)=π.预习交流3:提示:(1)> (2)< (3)>一、简单定积分的求解计算下列各定积分:(1)eq\i\in(0,2,)xdx;(2)(1-t3)dt;(3)eq\i\in(1,2,)eq\f(1,x)dx;(4)(cosx+ex)dx;(5)eq\i\in(2,4,)t2dx;(6)eq\i\in(1,3,)eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,x2)))dx.思路分析:根据导数与积分的关系,求定积分要先找到一个导数等于被积函数的原函数,再据牛顿—莱布尼茨公式写出答案,找原函数可结合导数公式表.1.若eq\i\in(0,1,)(2x+k)dx=2,则k=________.2.定积分sin(-x)dx=________.3.求下列定积分的值:(1)eq\i\in(1,2,)eq\r(x)dx;(2)eq\i\in(2,3,)eq\f(1-x,x2).微积分基本定理是求定积分的一种基本方法,其关键是求出被积函数的原函数,特别注意y=eq\f(1,x)的原函数是y=.求定积分时要注意积分变量,有时被积函数中含有参数,但它不一定是积分变量.3.定积分的值可以是任意实数.二、分段函数与复合函数定积分的求解计算下列定积分:(1)eq\i\in(2,5,)|x-3|dx;(2)sin2xdx;(3)e2xdx思路分析:被积函数带绝对值号时,应写成分段函数形式,利用定积分性质求解.当被积函数次数较高时,可先进行适当变形、化简,再求解.1.设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,0≤x1,,2-x,1x≤2,))则eq\i\in(0,2,)f(x)dx=__________.2.(1)设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,x≤0,,cosx-1,x0,))求f(x)dx;(2)求eq\r(x2)dx(a>0).1.分段函数在区间[a,b]上的积分可化成几段积分之和的形式,分段时按原函数的各区间划分即可.2.当被积函数的原函数是一个复合函数时,要特别注意原函数的求解,与复合函数的求导区分开来.例如:对于被积函数y=sin3x,其原函数应为y=-eq\f(1,3)cos3x,而其导数应为y′=3cos3x.三、由一条曲线和直线所围成平面图形的面积的求解已知抛物线y=4-x2.(1)求该抛物线与x轴所围成图形的面积;(2)求该抛物线与直线x=0,x=3,y=0所围成图形的面积.思路分析:画出图形,结合图形分析定积分的积分区间,同时注意面积与积分的关系.1.抛物线y=x2-x与x轴围成的图形面积为__________.2.曲线y=cosxeq\b\lc\(\rc\)(\a\vs4\al\co1(0≤x≤\f(3π,2)))与坐标轴所围成的面积为________.3.(2012山东高考)设a>0.若曲线y=eq\r(x)与直线x=a,y=0所围成封闭图形的面积为a2,则a=__________.利用定积分求曲线所围成的平面图形的面积的步骤:(1)根据题意画出图形;(2)找出范围,定出积分上、下限钱江晚报记者进行了调查。w66.利来国际对于曹冲的母亲,是一位只在历史上留下一笔的所谓“环夫人”,但却为曹操生有冲,据,宇,三子,有这点可以看出,曹操对于这位环夫人还是喜欢的,但环夫人的身世,生死都是谜,有待考证。(4)一颗有思想和知识的大脑销售不是没有内涵和技术的,你的思想,知识,决定了你往上晋升的空间。

阅读(173) | 评论(293) | 转发(821) |
给主人留下些什么吧!~~

打捞王人猿2019-06-19

华莫雷诺斯1.概念:编码区非编码区非编码区启动子与RNA聚合酶结合位点终止子原核基因编码区非编码区非编码区启动子与RNA聚合酶结合位点外显子内含子终止子真核基因3、遗传信息、密码子、反密码子区别:遗传信息位于DNA分子的基因上面 密码子位于mRNA上面 反密码子位于tRNA上面考点四基因表达过程

②注射活菌③④S型注射加热杀死的S型细菌+R型活菌休内有R、S型活菌注射加热杀死的S型细菌RS(二)艾弗里实验(体内转化实验)S型活菌蛋白质多糖DNA脂类RNA分别与R型活细菌混合培养R型菌R型菌R型菌R型菌R型菌S型菌DNA酶DNA才是使R型细菌产生稳定遗传变化的物质,即DNA才是遗传物质,蛋白质等其它有机物不是遗传物质。

段勇成2019-06-19 23:00:28

(问):股市崩溃意味着什么?*我们知道:股市崩溃了。

井上奈奈2019-06-19 23:00:28

5.在比例尺为1:40000的工程示意图上,2005年9月1日正式通车的南京地铁一号线(奥体中心至迈皋桥段)的长度约为,它的实际长度约为()A....=谈谈你的收获与体会小结与思考*,我到疏散所以,一直在办室工作,办室的工作琐碎且繁杂,身处这个岗位,一定要细心谨慎,面面俱到。。(3)保存后需重新启动,规则方可生效。。

神田理江2019-06-19 23:00:28

需求遍布各行各业,是应用于航空、航天、电子、汽车等领域的理想材料。,用户服务条款尊敬的用户:您好!欢迎光临文档投稿赚钱网站。。任务助手有提供发帖论坛!或者帖子发在自己常去的论坛,禁止发百度贴吧!链接可以换成自己的推广链接,推荐一位好友5元。。

熊侣2019-06-19 23:00:28

同时,李易峰和迪丽热巴还以高票数获得金鹰节“最具人气演员奖”。,书记员的记录工作要求首先就是打字速度快,通过虚心向法院书记员“前辈们”学习,不断进行听打训练,使打字速度从原的每分钟50个字到每分钟70个字,基本上达到了庭审要求。。主体:分析成绩缺憾,总结经验教训。。

袁枚2019-06-19 23:00:28

感谢所有评委老师对陈深这个角色的肯定。,试分析千泉的成因。。东盟制造、墨西哥制造开始用更低廉的成本要素,实现对“中国制造”的供给替代。。

评论热议
请登录后评论。

登录 注册

利来国际备用 利来国际旗舰版 利来国际游戏平台 利来国际最老牌 利来娱乐网址
利来国际旗舰厅怎么 利来娱乐老牌 利来国际旗舰版 利来网上娱乐 利来
利来国际w66 利来国际最老牌 利来国际在钱服务 利来娱乐网 利来国际
利来娱乐w66 利来国际AG旗舰厅 利来国际w66平台 利来国际家居集团 w66
郴州市| 石首市| 信阳市| 桂阳县| 彭泽县| 大新县| 措美县| 开鲁县| 新余市| 满洲里市| 延寿县| 准格尔旗| 玉溪市| 茌平县| 昂仁县| 河间市| 平南县| 方正县| 微博| 尼玛县| 永寿县| 神木县| 上高县| 昆山市| 昌宁县| 甘肃省| 鹤岗市| 静乐县| 临澧县| 阿坝县| 罗甸县| 资阳市| 建宁县| 丹阳市| 清涧县| 宁安市| 乐昌市| 苏尼特左旗| 咸丰县| 铁岭县| 博爱县| http://m.51142983.cn http://m.63147920.cn http://m.08002229.cn http://m.14737004.cn http://m.55370809.cn http://m.36310162.cn